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High red meat intake has been linked with an increased
risk of colorectal cancer and adenomas. During high
temperature cooking of red meats, heterocyclic amines
(HCAs) are generated; however, to be carcinogenic, they
must be metabolized by enzymes including cytochrome
P450 1A2 (CYP1A2) and N-acetyltransferase 1 (NAT1)
and/or N-acetyltransferase 2 (NAT2). We have conducted a
clinic-based case±control study of colorectal adenomas
that focused on assessment of exposure to HCAs
(estimated by use of a HCA database and meat cooking
module) and modi®cation of these exposures by genetic
factors. We have previously reported that intake of MeIQx
was associated with an increased risk of colorectal
adenomas [overall association at 80th percentile,
> 27.00 ng/day: odds ratio (OR) 2.68, 95% con®dence
interval (CI) 1.58±4.55]. Here, we report our evaluation of
whether variation in CYP1A2, NAT1 and/or NAT2 modify
the association between HCAs and colorectal adenoma
formation in 146 cases and 228 frequency-matched
controls. The NAT1�10 allele was associated with a
nonsigni®cant increased risk of colorectal adenomas
(OR 1.43; 95% CI 0.86±2.36). Further, when we analysed
2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)
intake as a categorical variable, we observed a six-fold
increase in adenoma risk among rapid NAT1 acetylators
who consumed more than 27 ng a day (OR 6.50; 95% CI
2.16±19.7), whereas among slow NAT1 acetylators, the
increase in risk was two-fold (OR 2.32; 95% CI 1.12±
4.81). While suggestive, the results were not signi®cantly
different from each other on either an additive or
multiplicative scale. In contrast, NAT2 genotype and

CYP1A2 and NAT2 hepatic activity measured by caffeine
urinary metabolites were not associated with adenoma
risk, although an increase in risk with rapid CYP1A2 activity
could not be ruled out (OR 1.46; 95% CI 0.76±2.81).
Moreover, there was no evidence that the effect of MeIQx
was enhanced among subjects in any subgroup de®ned by
variation in these measures. These results are compatible
with the hypothesis that high HCA exposure is associated
with an increased risk of colorectal adenomas, particularly
in genetically susceptible subgroups. Further study of
larger populations is needed to con®rm and extend these
observations. Pharmacogenetics 12:145±150 & 2002
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Introduction
High red meat intake is suggested to be associated with
an increased risk of colorectal cancer [1,2], and with
adenomatous polyps [3±7]. A major class of carcinogens
generated during high temperature cooking of red
meats is the heterocyclic amines [8]. Although DNA
adducts of HCAs have been detected in human colonic
tissue [9], it is unclear whether HCAs, such as 2-amino-
3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-
amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP),
induce gastrointestinal tumours in humans. Using surro-
gates of exposure to these carcinogens, epidemiological

studies have produced suggestive, but inconsistent
evidence for a link to colorectal cancer [1,10±15] and
colorectal adenoma formation [15,16].

For HCAs to be carcinogenic, they must be metabo-
lized by enzymes that include cytochrome P450 1A2
(CYP1A2) [17], N-acetyltransferase 1 (NAT1) and/or N-
acetyltransferase 2 (NAT2) [18], and those in the
sulfotransferase (SULT1A1, SULT1A3, SULT1E1 and
SULT2A1) family [19±22]. Each of these enzymes
exhibits genetic polymorphisms in humans [23±25],
although the genetic polymorphisms identi®ed in
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CYP1A2 have not been correlated with the metabolic
variability observed [26±28]. Rapid acetylator pheno-
type has been reported to be associated with suscept-
ibility to colorectal cancer [17,29,30], but not with
colorectal polyp risk [17,31]. However, studies that
classi®ed acetylator status using genotypic techniques
have not shown a consistent overall association with
either endpoint [32±38].

One study that assessed phenotypic expression of
CYP1A2 in combination with NAT2 acetylation status
reported a higher frequency of colorectal cancer and
polyp cases who were rapid for both enzymes compared
with controls [17]. In addition, the authors reported that
individuals with this combined rapid±rapid phenotype
were at particular risk among subjects who preferred
well-done meat. The possible modifying effect of
genetic polymorphism in NAT1 was not assessed. Other
case±control studies have also observed a signi®cant
association of high red meat intake with colorectal
adenoma [31] and colorectal cancer [32] that was
limited to NAT2 rapid acetylators, while a further study
did not [39].

We recently reported results from this population of
military of®cers suggesting carcinogenic compounds
formed by high-temperature cooking techniques may
be positively associated with colorectal adenoma
development [40]. In this study, we assessed the role of
CYP1A2, NAT1 and/or NAT2 in colorectal adenoma
formation and whether they modify the previously
reported HCA association.

Materials and methods
We conducted a case±control study of colorectal adeno-
mas to investigate the role of HCAs and genetic
susceptibility in a medical centre serving mainly active
and retired military of®cers and their families who have
been described previously [16]. Brie¯y, the cases com-
prised patients who were diagnosed with colorectal
adenomas at sigmoidoscopy or colonoscopy and controls
who were selected among subjects without colorectal
adenomas at sigmoidoscopy. Although 10% of control
subjects were referred to the clinic for sigmoidoscopy
because of gastrointestinal symptoms, such as blood in
stool or diarrhoea, the majority were screened to meet
military requirements. Excluding the control subjects
with gastrointestinal symptoms from the analysis did
not alter the ®ndings. The 146 colorectal adenoma
cases in this report were frequency-matched by gender
and age in 5-year intervals to 228 control subjects.
Cases who reported a previous adenoma were excluded
from the study. Blood was collected from both cases
and control subjects during the clinic visit. A self-
administered food frequency questionnaire (FFQ), an
overnight urine collection kit and a urine caffeine

collection kit with cooler and ice packs were delivered
to each subject's home.

A meat cooking module including 23 meat items,
doneness level and cooking method, was also com-
pleted by the subjects. We estimated HCA intake using
an HCA database that we developed [41,42] and the
response from the FFQ. First, we estimated gram
consumption of each meat item (steak, hamburger
patty, pork chops, etc.), using frequency and portion
size, by cooking technique and doneness level. Then
we derived HCA intake by multiplying grams of meat
by HCA concentration measured for each cooking tech-
nique/doneness level contribution for that meat type.
HCA concentration was summed across all of the meat
items.

Genotyping of NAT2 was determined by polymerase
chain reaction-restriction fragment length polymorph-
ism (PCR-RFLP) on DNA samples using a previously
described method [43,44]. Six NAT2 slow acetylator
alleles were ascertained: NAT2�5A, NAT2�5B,
NAT2�5C, NAT2�6, NAT2�7 and NAT2�14. Genotyping
of NAT1 was also determined by PCR-RFLP on DNA
samples [45]. Nine NAT1 acetylator alleles (NAT1�3,
NAT1�4, NAT1�10, NAT1�11, NAT1�14A, NAT1�14B,
NAT1�15, NAT1�17 and NAT1�22) and 17 NAT1
genotypes were identi®ed. Individuals were classi®ed
as rapid acetylators if they possessed at least one
NAT1�10 allele [46,47]. Due to the low frequency of
slow acetylators, all NAT1 genotypes other than those
possessing the NAT1�10 allele were combined to form
the reference group. In addition, subjects were pheno-
typed for CYP1A2 and NAT2 activity by measuring
urinary caffeine metabolites following methods detailed
elsewhere [48]. Out of 374 subjects, 351, 351, 318 and
350 samples were assayed for NAT2 genotype, NAT2
phenotype, NAT1 genotype and CYP1A2 phenotype,
respectively. Missing laboratory data were primarily
due to inadequate sample availability, DNA degrada-
tion, or failure in the experimental assay. Laboratory
personnel were blinded to case status for all assays.

Unconditional logistic regression was used to calculate
odds ratios (OR) and 95% con®dence intervals (CI)
between HCA intake, genetic polymorphisms and colo-
rectal adenoma risk. Odds ratios for PhIP and MeIQx
are presented in 10 ng/day increments as well as
categorically, in quintiles, according to the HCA dis-
tribution in the control subjects. Interaction between
polymorphisms and HCA intake on colorectal adenoma
risk was assessed on both the multiplicative and
additive scale. Interaction was evaluated by creating
indicator variables for the combination of metabolic
activity (i.e. slow vs rapid) and HCA intake levels, with
slow metabolizers with low intake serving as the
reference category. P-values for the test for multi-
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plicative interaction were calculated by the likelihood
ratio test, comparing the above model with a model
containing indicator terms for the main effect of
genotype and HCA exposure only. The 80th percentile
of MeIQx intake (< 27.00 ng/day or . 27.00 ng/day)
and 60th percentile of PhIP intake (, 63.00 ng/day or
> 63.00 ng/day), respectively, were used as the cut-off
for these calculations [40] since the excess risk of
colorectal adenomas was con®ned to the ®fth quintile
for the former and the upper two quintiles for the
latter. Similar results were observed when the inter-
action was assessed using the 80th percentile cutoff for
PhIP (, 140 ng/day or > 140 ng/day; data not shown).
An additive interaction was evaluated by testing for
signi®cance of the estimated excess risk for interaction
[49]. All ORs were adjusted for age, gender, pack±years
of cigarette smoking, total caloric intake, physical
activity, nonsteroidal anti-in¯ammatory drug use, diet-
ary ®bre intake and reason for screening (routine or
other).

Results
Eighty-six percent of the cases and 89% of the control
subjects were of Caucasian origin, and the median age
of the cases and control subjects was 58 and 59 years,
respectively. Details on their demographics and risk
factors have been reported previously [16].

High intake of PhIP and MeIQx were associated with
increased colorectal cancer risk [40]; however, neither
of the NAT genetic polymorphisms was associated with
colorectal adenoma risk (Table 1), although there was
some evidence of an increased risk for individuals who
were genotypically rapid for NAT1. Similarly, greater
CYP1A2 and NAT2 phenotypic expression were not

independently associated with colorectal adenoma risk.
Taking both phenotypes into consideration, simulta-
neously, did not alter these ®ndings (data not shown).

Potential effect modi®cation of HCA exposure and
colorectal adenoma risk by NAT2 or CYP1A2 pheno-
types were explored. No effect modi®cation by either
of the phenotypes was observed when the colorectal
adenoma risk associated with MeIQx consumption was
assessed (data not shown). Results were similar when
NAT2 genotype was used as the possible modi®er.
When the NAT2 and CYP1A2 phenotypes were com-
bined, no increase in colorectal adenoma risk was
observed among individuals with the rapid±rapid pheno-
types.

In contrast, an increase in colorectal adenoma risk
associated with MeIQx consumption was observed in
subjects who were genotypically rapid for NAT1. When
MeIQx intake was analysed as a continuous variable, a
34% increase in colorectal adenoma risk per 10 ng of
MeIQx intake (OR � 1.34; 95% CI 1.08±1.66) was
observed among rapid NAT1 acetylators, whereas
among slow NAT1 acetylators, a 12% increase in risk
was observed (OR � 1.12; 95% CI 0.98±1.27). Similarly,
when we analysed MeIQx as a categorical variable, we
observed a six-fold increase in adenoma risk among
rapid NAT1 acetylators, those who consumed more than
27 ng a day (OR � 6.50; 95% CI 2.16±19.6) compared
with a two-fold increase in risk among slow acetylators
(OR � 2.32; 95% CI 1.12±4.81). Analysing the data
using a joint effects model also resulted in similar
associations (Table 2) suggesting that MeIQx may be
associated with a greater risk of colorectal adenoma
formation among individuals with the NAT1�10 allele.

Table 1 Odds ratios (OR) and 95% con®dence intervals (CI) between genotype or
phenotype and colorectal adenoma risk

Genotype Case Control OR (95% CI) adjusted1

NAT12

No NAT1�10 77 (58.3%) 126 (65.6%) 1.00 (ref)
Rapid 55 (41.7%) 66 (34.4%) 1.43 (0.86±2.36)

NAT23

Slow 79 (55.2%) 110 (52.9%) 1.00 (ref)
Rapid 64 (44.8%) 98 (47.1%) 0.91 (0.57±1.45)

Phenotype4 Median (range) Median (range)
CYP1A2 6.47 (0.8±34.8) 5.49 (0±32.3) 1.02 (0.97±1.07)

Slow (< 12) 114 (81.4%) 183 (87.1%) 1.00 (ref)
Rapid (. 12) 26 (18.6%) 27 (12.9%) 1.46 (0.76±2.81)

NAT2 0.43 (0±4.45) 0.6 (0.1±4.12) 0.97 (0.75±1.23)
Slow (< 0.6) 75 (53.6%) 105 (49.8%) 1.00 (ref)
Rapid (. 0.6) 65 (46.4%) 106 (50.2%) 0.86 (0.54±1.38)

1Odds ratios adjusted for age, gender, total caloric intake, ®bre intake, reason for screening, physical activity,
pack±years of cigarette smoking, and use of non-steroidal anti-in¯ammatory drugs (NSAIDS). 2Individuals
were classi®ed as rapid acetylators if they possessed at least one NAT1�10 allele. Individuals were classi®ed
as slow acetylators if they possessed at least one NAT1�14, NAT1�15, NAT1�17 or NAT1�22 allele. Due to
the low frequency of slow acetylators, all NAT1 genotypes other those possessing the NAT1�10 allele
(rapid) were combined to form the reference group. 3Individuals were classi®ed as slow acetylators if they had
two slow acetylator alleles, and rapid acetylators if they had at least one NAT2�4 or NAT2�12 allele. 4Urinary
molar ratio of caffeine metabolites [(17X � 17U)/137X] was used as an index for CYP1A2 enzyme activity;
ratio of AFMU:1X was used to assign NAT2 acetylation phenotype.

Heterocyclic amine metabolism and colorectal adenomas Ishibe et al. 147



No enhanced increase in risk among rapid NAT1
acetylators who were exposed at higher levels of daily
PhIP consumption (> 63.00 ng) was observed (OR �
1.56; 95% CI 0.69±3.54).

Effect modi®cation of the association between
NAT1�10 allele and colorectal adenoma by MeIQx
intake level was also assessed. No association between
colorectal adenoma risk and the NAT1�10 allele was
observed among subjects who consumed less than
27 ng of MeIQx per day (OR � 1.21; 95% CI 0.65±
2.23). In contrast, an increase in adenoma risk with the
NAT1�10 allele was noted among subjects with daily
consumption greater than 27 ng of MeIQx (OR � 2.86;
95% CI 0.93±8.79), although this association did not
reach statistical signi®cance.

Discussion
Despite considerable research into delineating the
mechanism involved in the consistent association ob-
served between high red meat consumption and colo-
rectal cancer, it is still largely unknown as to which
HCAs in red meat, if any, and which biotransformation
enzymes are involved in this carcinogenic process. In
this study, MeIQx intake appeared to be associated
with increased risk of colorectal adenomas, particularly
at higher intakes and in NAT1 rapid acetylators. In
contrast, no evidence of an effect modi®cation by NAT2
or CYP1A2 was observed.

The data reported here are broadly consistent with a
recent animal study [50] and with data of Chen et al.
[51]. A greater dose-dependent increase in PhIP-in-

duced aberrant crypt foci in rapid acetylator rats com-
pared with slow acetylator rats was observed in the
former, and a stronger association of red meat intake
and colorectal cancer was observed in men who had the
rapid acetylation genotype of NAT1 and NAT2 in the
latter. Although we also observed an increase in colo-
rectal adenoma risk among rapid acetylators with higher
HCA consumption, the risk was limited to NAT1 rapid
acetylators with higher MeIQx consumption. Further-
more, we did not observe a metabolic effect of high
CYP1A2 activity as has been reported previously
[17,52±54].

The strength of this study is that it was designed to
evaluate the interrelationships between genetic poly-
morphisms in metabolizing enzymes (i.e. CYP1A2
phenotype, NAT2 genotype and phenotype, and NAT1
genotype) and speci®c HCAs (i.e. MeIQx, PhIP) postu-
lated to be involved in HCA metabolism in colorectal
adenoma formation. Furthermore, the outcome of inter-
est was pre-cancerous adenoma, which should not have
in¯uenced their responses about usual dietary habits as
a cancer diagnosis may. However, the fact that we
examined multiple potential interactions between these
genetic polymorphisms and HCA intake suggests that
these results should be interpreted with caution.
Furthermore, other enzymes that may be involved in
HCA metabolism, such as the sulfotransferases have
not been accounted for.

The results in this study are compatible with the
hypothesis that high exposure of heterocyclic amines is
a modi®able cause of colorectal adenoma, particularly

Table 2 Odds ratios and 95% con®dence intervals of the joint association between HCA
exposure and NAT1 genotype and colorectal adenoma risk

NAT1 genotype1 MeIQx (80th percentile) Cases Controls Adjusted (95% CI)2

< 27.00 ng 78 160 1.00 (ref)
. 27.00 ng 54 32 2.68 (1.58±4.55)

No NAT1�10 < 27.00 ng 45 101 1.00 (ref)
No NAT1�10 . 27.00 ng 32 25 2.44 (1.20±4.99)
Rapid < 27.00 ng 33 59 1.23 (0.67±2.24)
Rapid . 27.00 ng 22 7 7.67 (2.77±21.3)3

Multiplicative interaction 2.56 (0.73±9.02)
Additive interaction 5.00 (ÿ2.53, 12.5)

PhIP (60th percentile)
, 63.00 ng 57 115 1.00 (ref)
> 63.00 ng 75 77 1.93 (1.17±3.18)

No NAT1�10 , 63.00 ng 31 77 1.00 (ref)
No NAT1�10 > 63.00 ng 46 49 2.17 (1.13±4.14)
Rapid , 63.00 ng 26 38 1.66 (0.81±3.39)
Rapid > 63.00 ng 29 28 2.81 (1.33±5.92)
Multiplicative interaction 0.78 (0.28±2.18)
Additive interaction ÿ0.02 (ÿ2.18, 2.14)

1Individuals were classi®ed as rapid acetylators if they possessed at least one Nf they possessed at least one
NAT1�10 allele. Due to the low frequency of slow acetylators, all NAT1 genotypes other than those
possessing the NAT1�10 allele were combined to form the reference group. 2All odds ratios adjusted for
age, gender, total calori®c intake, ®bre intake, reason for screening, physical activity, pack±years of cigarette
smoking, and use of non-steroidal anti-in¯ammatory drugs (NSAIDs). 3Subgroup results presented in the text
can be approximated from this table. The six-fold increase in risk observed among rapid NAT1 acetylators
who consumed more than 27 ng a day of MeIQx is approximately 7.67 divided by 1.23.
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in a subpopulation of genetically susceptible indivi-
duals (i.e. NAT1 rapid acetylators). This gene±environ-
ment interaction could potentially be important in
populations in such as Asians [55,56] and African-
Americans [45] in which the rapid acetylator allele
frequency is high. With the dietary changes associated
with a more Western lifestyle in Asian populations, an
increase in colorectal cancer incidence may be observed
[54,57,58]. Further study is clearly warranted to con®rm
and extend these observations, particularly in popula-
tions with higher rapid acetylation allele frequencies.
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